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Interplay of Localization and Superconducting 
Fluctuations above the Critical Point 

Elihu A b r a h a m s  1 

Received August 7, 1984 

A review of some developments in localization effects on conductivity and 
magnetoconductivity is given. The determination of inelastic scattering rates for 
electrons in thin disordered metallic films is emphasized. In two-dimensional 
disordered superconductors above To, the superconducting fluctuations play an 
essential role. Recent work on the interplay of localization and superconducting 
fluctuation effects in determining the magnetoconductivity and the inelastic rate 
is described. 
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It is a great honor to be able to contribute to the I. M. Lifshitz Memorial 
Volume of the Journal of Statistical Physics. In view of I. M. Lifshitz's many 
fundamental and pioneering works on the electronic properties of disordered 
materials, it is appropriate here to describe some current research in the area 
of what has become called "localization." In particular, the interplay of 
localization effects and superconductivity has become a subject of intensive 
experimental investigation; this has stimulated renewed theoretical interest in 
the problem of "dirty superconductors" which was discussed so extensively 
20 years ago. 

In this communication, after a brief resum6 of relevant recent 
developments in localization, we shall focus on the determination of the 
inelastic lifetime of electrons in disordered metallic and superconducting 
systems. We restrict our discussion to two dimensions, where the localization 
effects are most pronounced. 

The basic localization problem ("Anderson localization"), concerns the 
behavior of noninteracting electrons in a disordered solid. Later we shall 
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introduce some features of the electron-electron interaction perturbatively. In 
1976, F. J. Wegner (1) proposed the beginnings of a scaling theory for 
electrons in disordered systems. In 1979, the scaling theory was put on a 
firm basis (2'3) and several important results were derived. Among these was 
the prediction t2) that in two dimensions there is no true metallic conduc- 
tivity; at large enough scales (sample sizes), the conductivity must scale 
(eventually) exponentially to zero. In other words, there are no extended 
electronic states in a disordered two-dimensional system and for a large class 
of random potentials, all states are exponentially localized. The latter result, 
of course, has been known for some time for one dimension. 

The depression of the conductivity due to the localization effect is 
caused by scattering processes which involve coherent backwards scattering 
of electron wave packets by the random potential. (4) This is expressed 
mathematically in terms of the diffusion propagator in the particle-particle 
channel (~) which in two dimensions gives a negative contribution to the 
conductivity which is logarithmically divergent but is cutoff by an 
appropriate length scale L:  

e 2 

a = a o - ~ I n ( L / l )  (1) 

where a 0 is the usual (Sommerfeld) conductivity and l is the elastic mean 
free path. 

The length scale L which determines the logarithmic decrease of the 
conductivity can be determined by various factors. At absolute zero, at zero 
frequency, and in zero magnetic field, it is the sample size. (z) At finite 
temperature, inelastic scattering destroys the coherent scattering so L 
becomes L r ,  which may be described as the distance an electron diffuses in 
the random potential before suffering an inelastic scattering. (6) The quantity 
L r is given by 

L r  = [ l l i (T) /2]  1/2 (2) 

where l i ( T  ) is the temperature-dependent, inelastic mean free path. Since l 
may be determined experimentally from a 0 in Eq. (1), it appears possible to 
extract l i ( T  ) and its T dependence from experiment. At finite magnetic field 
H, L becomes the magnetic length 

L n = (he~e l l )  1/2 (3) 

and a negative magnetoresistance is predicted (7) and confirmed 
experimentally. 2 

2 For a large list of experimental results see Ref. 8. 
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The comparison with experiment is complicated by the fact that if the 
Coulomb interaction between electrons is included another contribution to 
the conductivity arises which is not present in the absence of disorder. It is 
due to the breakdown of translation invariance and the fact that electrons 
have an enhanced interaction due to their diffusive rather than ballistic, 
motion. If this effect is included perturbatively, an additional correction of 
precisely the form in Eq. (1) is obtained where L becomes hvF/ksT. 

It has proved possible to disentangle the localization and interaction 
processes by measuring the magnetoresistance for which the two effects 
behave quite differently. The former, as remarked above, acquires a In H 
dependent negative magnetoresistance, the latter being essentially unaffected. 
In fact, the magnetoresistance turns out to be a universal function of 
Lr/LH.  (7'9) Therefore, magnetoresistance experiments yield the following: A 
confirmation of the universal prefactor of the logarithmic localization 
conductivity correction in Eq. (1), the temperature dependence of L r,  and 
hence the inelastic mean free path li(T ) and the magnitude of li(T ) = vvri(T ), 
where v r is the Fermi velocity and l/z; the inelastic scattering rate. 

The inelastic scattering rate in normal metallic films is determined by 
electron-electron scattering and electron-phonon scattering; the former 
dominates at temperatures below 1 K. The inelastic rates are strongly 
influenced by the presence of disorder. The electron-photon rate has been 
calculated by A. Schmid, (1~ whose analysis is easily extended to two 
dimensions. The electron-electron rate in two dimensions was calculated by 
Abrahams, Anderson, Lee, and Ramakrishnan (11) and Lopes dos Santos. (12) 
A somewhat different derivation was given by Altshuler, Aronov, and 
Khmel'nitskii. (12) It was pointed out by Fukuyama and Abrahams (13) that 
the correct inelastic L r is obtained not from the single-electron inelastic 
scattering rate but rather from a cutoff in the particle-particle diffusion 
propagator ("Cooperon"). This comes from a finite self-energy (mass) 
caused by inelastic scattering; it may be computed perturbatively. For the 
electron-electron and electron-phonon cases, the two methods give the same 
results.(11,13) At low temperature, the result for the temperature-dependence 
of the electron-electron inelastic rate is 

1/v i ec T I n A  (4) 

The argument of the logarithm varies among the different calculations and is 
temperature dependent for the case of the cutoff of the zero wave number 
Cooperon. According to Fukuyama, (14) the magnetoresistance measures a 
certain average of 1/vi(q) since a sum of Cooperons of different wave 
number q enters. In that case, the results of Ref. 12 appear to be appropriate 
for experimental comparisons. This form and the predicted (12-14) order of 
magnitude has been confirmd in a variety of experiments. (15-1v) 
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Recently, similar sorts of experiments have been performed on two- 
dimensional metallic films which at low enough temperatures become super- 
conducting. Now, the existence of superconducting fluctuations above T c 
complicates the problem significantly. The conductivity is enhanced by the 
presence of superconducting fluctuations. (18'19) The application of a 
magnetic field suppresses (2~ the fluctuations and leads to a positive 
contribution to the magnetoresistance. 

There is an "anomalous' contribution to the conductivity originally 
discussed by Maki (21) and Thompson (2z) which also is suppressed by a 
magnetic field. Larkin t23) has recently shown that the Maki-Thompson (MT) 
conductivity contribution exhibits a positive magnetoresistance with the same 
field dependence as the negative one of ordinary localization. (7) The Larkin- 
Maki-Thompson magnetoresistance depends on the electron inelastic 
lifetime, more precisely the mass of the Cooperon, in a similar manner to the 
ordinary negative localization magnetoresistance. The Cooperon mass is 
directly related (23) to the pair-breaking parameter (2z) 6 of the Maki-  
Thompson theory. As has been pointed out already in Refs. 24, the existence 
of superconducting fluctuations gives another contribution to the electron 
inelastic lifetime and hence to the diffusive Cooperon mass. The process is 
spontaneous creation and decay of superconducting fluctuations from and 
into electrons of opposite spin and momentum. It is to be expected that this 
contribution to the inelastic rate increases as ( T - T o )  -1 rather than 
decreasing as a power of T as is the case for electron-electron and electron- 
phonon processes. 

Larkin's prediction (23~ has been verified by several experimental 
groups (25) in the region of low fields and temperatures not too close to To. 
The limitations of Larkin's theory are 

ln(T/Tc) >> 1/Tr i (5a) 

4DeH/c < T ln(T/T~) (5b) 

where H is the magnetic field, D the diffusion constant D = vpl/2, and we 
have set Boltzmann's constant equal to unity. A second difficulty is that in 
the Larkin magnetoresistance expression, the cutoff of the Cooperon 
diffusion pole, whatever its source, is taken to be independent of magnetic 
field. This is correct for the electron-electron interaction contribution to the 
cutoff .  (26) It is certainly not the case for the superconducting fluctuation 
contribution since the fluctuations are suppressed by a magnetic field. 

In what follows, we describe how the limitations of the Larkin-Maki-  
Thompson magnetoresistance theory are overcome. Before doing so, we 
again mention briefly the other important magnetoresistance contributions. 
We have already mentioned the localization negative magnetoresistance 
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which occurs whether or not the sample is superconducting. We also referred 
to the positive magnetoresistance due to the suppression of the supercon- 
ducting fluctuation conductivity (Aslamazov-Larkin contribution). (~8'19) 
This magnetoresistance was already discussed more than a decade ago (2~ 
and it is only important very close to T C. In this paper, we do not discuss the 
influence of spin-orbit impurity scattering which strongly modifies the 
magnetoresistence. (4) A number of other contributions which are important 
far from Tc have been discussed by Altshuler et al. ~27) Specifically, we 
describe results for the region In T/T~ < 1. 

The first problem involves extending the limits of Eqs. (5) for the 
magnetoresistance expression to be used in analyzing the experimental data. 
The limitations arise because Larkin (23) neglected a term of order 
[Tr i In(T/T~)]-1 resulting in Eq. (5a) and because he nglected the influence 
of the mgnetic field on the superconducting fluctuation resulting in Eq. (5b). 
The necessary extensions have been made recently by Lopes dos Santos and 
Abrahams. (28) The results of this work are first, that the zero field MT 
conductance is found for all T: 

aM.r(T, H = O) = (e2/2n2d) fl(T, ri) ln [ ln(T-J Tc) ] (6) 

In Eq. (6), d is the film thickness and ~5 is the MT "pair-breaking" parameter, 
a = lt/8Tr i. The function fl(T, vi) is a generalization of the fl(T) introduced 
by Larkin. {23) The generalization removes the restriction of Eq. (5a). Here 
we give only the low-T form of fl(T, ri): 

T _ •) - '  
(7) 

Larkin's fl(T) does not contain the pair breaker 6 which appears on the right- 
hand side of Eq. (7). 

The second result of Ref. 28 arises by inclusion of the magnetic field in 
the superconducting fluctuation. It gives AoMr(T, H), the MT magnetocon- 
ductance, in regions of T and H not previously discussed. Thus, at low fields 

4DeH/c < min[Tln(T/T~), T 1 (8) 

but at all T > T~, the form of the Larkin results ~23) is obtained but with the 
generalized fl(T, ri) ~28) replacing his fl(T). Finally, close to Tc[ln(T)T~ ~ 1], 
AoMT(T, H) has been obtained at higher fields than allowed by Eq. (8). We 
do not give the complete formulas ~28) here. However, at high field, as the 
superconducting fluctuation becomes quenched, AaMT(T, H) saturates at the 
value --aM,(T, H = 0), a satisfying result. 

822/38/1 2 7 
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As we have pointed out previously, the value of l /r ;  may itself depend 
on H, which will give an implicit field dependence of fl(T, ri) as well as an 
extra field dependence in the field dependent terms of AaMT(T, H). This will 
significantly complicate the reduction of experimental data. The field depen- 
dence of the superconducting fluctuation contribution to I / r ; ,  the Cooperon 
cutoff, has been worked out by Brenig, Chang, Abrahams, and W61fle.(29) In 
the absence of magnetic field, the cu to f f~  ~ at T =  To. ~24) However, the 
magnetic field suppresses T i and the divergence is shifted down to Tc(H ), but 
the results are really not valid for T too close to T~(H), namely, in T I T  c 
must be larger than (kFl) -l /z,  where kv is the Fermi momentum. Unfor- 
tunately, there seems to be no simple way to disentangle the T , H  depen- 
dences of 1/r i from magnetoresistance data. Some procedural suggestions are 
made in Ref. 29. 
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